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ABSTRACT

Describes the use of Fuzzy Multiple Objective Linear Programming
(FMOLP) in forest planning where imprecise objective function coeffi-
cients are present. An extended formulation is also described for planning
situations where uncertainties occur in the constraint set. A sample prob-
lem is presented to illustrate the approach.

INTRODUCTION

During the last two decades, mathematical programming models ha
been used extensively in forest planning, with linear programming (L.
being the most commonly used method. However, concerns about tl
use of LP models have also been raised (Bare & Field, 1987). The ma
criticisms deal with the inherently deterministic nature of LP models, ar
their use of precise coefficients. In traditional LP models, the coefficien
or parameters are assumed to be known with certainty. In many rec
world forest planning problems, however, it is very unlikely that this a
sumption is valid. For example, forest managers often have to deal wi
insufficient or imperfect information due to the inherent complexity -
the system (Allen & Gould, 1986). Hence, to enhance model utility, it
necessary to be able to incorporate imprecise or uncertain informatic
into the model.

The term ‘uncertainty’ has been widely used to denote several phenomen
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has been used to represent risks, imprecision, randomness, inaccuracy,
\biguity or inexactness. In this paper, uncertainty is used to reflect any
enomena other than those regarded as random or probabilistic in nature.
There are several reasons for incorporating uncertainty in forest plan-
1g. First, forest planning involves long planning horizons (e.g. several
cades). Accurate long-term projections are generally difficult to make
d are at best only educated guesses of future outcomes. Future timber
ces, for instance, are highly dependent on several variables making
m difficult to predict. Moreover, most forest lands covering large di-
rse geographical areas produce multiple goods and services which are
lued differently by forest users. Some of these uses can be adequately
asured while others are inherently qualitative and difficult to quantify.
nally, forest planning often requires the incorporation of human sub-
tivity which is both difficult to elicit and express in quantitative terms.
erefore, the use of optimization models that can incorporate imprecise
ormation, has become a prerequisite to comprehensive planning, par-
ularly in complex planning environments, such as forestry.

Several methods have been suggested to deal with imprecision and
certainty in forest planning. One such method is parametric linear
bgramming (Navon & McConnen, 1967; Weintraub & Ingram, 1981;
redes & Brodie, 1988). This approach can be used to examine the
anges in the LP solution as one or more parameters — usually in some
tematic or fixed proportion — are changed over a wide range of
lues. However, as Pickens & Dress (1988) point out, this approach
es not seem to be a viable approach for large-scale forestry problems.
lother suggested method is probabilistic or stochastic programming
hompson & Haynes, 1971; Hunter et al., 1976; Hof et al., 1988; Pick-
s & Dress, 1988). For certain types of problems where uncertainty is
inly due to randomness, these probability-based methods are appro-
ate. However, for other uncertain-ties (e.g. imprecision, ambiguity, in-
ictness and inaccuracies) these stochastic models may not be as
ective and efficient. A relatively new approach called fuzzy program-
ng may be better suited under these environments. The purpose of this
per is to develop a fuzzy multiple objective linear programming model
 forest planning that accommodates imprecise information. The paper
organized as follows; first, a single objective function with interval-
lued coefficients is formulated as a two-objective function problem.
en, in the presence of multiple objectives, some of which have exact
flicients while others have interval-valued coefficients, the problem is
‘mulated as a multiple objective linear programming problem. Finally,
uzzy multiple objective linear programming model is formulated with
th interval-valued and exact coefficients.
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BACKGROUND

The background of the fuzzy approach for forest planning is found
the literature on fuzzy sets and fuzzy linear programming (FLP). A bri
discussion on some FLP concepts is provided in this section but, fi
more details, readers are referred to Zadeh (1965), Dubois & Prac
(1980), and Zimmermann (1985, 1987). Bellman & Zadeh (1970) pr
vided the seminal work on decision making in a fuzzy environment ar
developed the original methodological basis for the development of fuz:
mathematical programming methods. Since then, a number of alternati
methodologies have been proposed. Most notable among these are tho
described by: Zimmermann (1975, 1978), Narasimham (1980), Hanne
(1981), Chanas (1983), Chanas & Kulej (1984), Tanaka et al. (198
1985), Verdegay (1984), Orlovski (1984), Tiwari et al. (1987), Delgado
al. (1989), and Rommelfanger et al. (1989).

A convenient way to describe FLP is to begin with the convention
linear programming problem;

Max Z=CX
AX<B }
X=0

where A is an (m X n) matrix, C € R" is a row vector and X e R", and
€ R" are column vectors. Consider the objective function coefficients co
tained in C. Rather than exact values, assume that the decision mak
(DM) only can provide approximate estimates of the values of the obje
tive function coefficients. Several authors have suggested ways to de
with this problem. Most of them are based on the concepts of fuz:
numbers and parameters. For example, Orlovski (1984, 1985) shows line
objective functions with fuzzy parameters, while Tanaka et al. (1984) e
amines linear programming with triangular fuzzy numbers. Tanaka er ¢
(1985) and Delgado et al. (1987) also describe linear programming wi
trapezoid fuzzy parameters to represent imprecise objective coefficients.
In this paper, it is assumed that the DM only can specify the coef
cients in the objective function as intervals [C!, C4, i=12,...,n, rath
than exact values. Furthermore, these interval coefficients are themselv
derived from interval estimates provided by the DM. Hence, in order
better understand the interval-valued objective function coefficients
the model proposed in this paper, it is necessary to describe some co
cepts concerning interval estimation and optimization. According
Moor (1966, 1969) and Kaufmann & Gupta (1988), an interval numb
is defined to be an ordered pair of real numbers, [a, b], with a < b. [a,
is the set of real numbers y such thata <y <bor[a b]={yla<y <t
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Arithmetic operations with intervals are defined as follows:

[a,b] + [c,d]=[a+ ¢, b+d], 2)
[a,b] — [e,dl=[a-d, b- (], 3
la, b] [c, d] = [min (ac, ad, bec, bd), max (ac, ad, bc, bd)), €)]
l[a, b] / [c, d] = [a, b] [1/d, 1/c] (Gif O € [c, d]) %)

In the traditional LP problem described in eqn (1) a unique objective
nction is defined for every set of objective function coefficients. How-
e, if these coefficients are expressed as intervals, the problem expands
m a single objective problem to a problem that contains an infinite
mber of objective functions for all x e X = {X e R" | AX < B, X > 0}.
other words, the problem expands to take into account all vectors C €
of the bounded interval C° = {C | C'< C < C*} as parameters.

Bitran (1980) examines linear multiple objective problems with interval
cfficients and suggests a possible solution approach by obtaining a sub-
oblem that generates and tests if a feasible extreme point solution is
icient (i.e. there exists no other solution that can bring improvement in
least one objective without degrading other objectives). On the other
nd, Rommelfanger et al. (1989) proposes an approach which involves
> selection of a single representative C; in each interval [C/, C/], and
n solves the following LP problem;

Max {CX | AX > B X 20}

ng conventional LP algorithms. Following the concept of Bierman
al. (1986) and Render & Stair (1988), Rommelfanger et al. (1989)
ygest several forms of the objective function. If the DM is optimistic,
n one may choose the ‘upper side’ of the objective function. That is,
 objective function Z is of the form;

Zv=C'X (6)

contrast, if one is pessimistic then the ‘lower side’ of the objective
iction may be selected, which is of the form;

Z'=Clx (7
risk neutral DM may elect to use
Z=(Z'+Z92=12)(C'+ C)X (8)
More generally, the objective function may be expressed as;
Z=(1-0)Z+ az" 9

={l-0)C'"+aCX O0<ac<l
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where a is called the optimism/pessimism parameter. Intuitively, eqn (9) h:
the advantages of allowing the DM to incorporate personal feelings ar
prior knowledge into the problem. However, the disadvantage of the methc
is that it requires information from the DM which may not be known.

If the DM feels uncomfortable in choosing a suitable objective fun
tion, a compromise objective function may be chosen by progressive r
duction of the objective space (i.e. C € R") as proposed by Rommelfang
et al. (1989). This approach reduces many objective functions into:

Max Z = CX with Ce C°

by extremely positioning the two objective functions; Max Z' and M:
Z", and finding the solution of the following vector-optimization probler

zZ! C'x
Max { = Max {
zZY Chx
subject to (1
AX<B
X=>0 +

Note, the single objective LP problem is converted into a two objecti
problem. This approach is more flexible and allows the generation of
compromise solution within the interval denoted by the two objective
C'X and C“X. Solving the two-objective problem, including addition
objectives whose coefficients may be exact or interval-valued, requires tk
use of multiple objective programming techniques.

FUZZY MULTIPLE OBJECTIVE LINEAR PROGRAMMING
(FMOLP)

Consider a multiple objective problem,;

Z,=CX
Z, = CGX (1
Max
Z, = CGX
subject to
AX<B
X220 :

Among the objective functions, some have unique coefficients, b
others are more loosely defined and with imprecise coefficients. For tl
latter case, the coefficients are represented by interval values instead
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act values. Furthermore, the membership functions of the objectives
¢ as follows:

0 if 2,0 < f,
wy=| BT <y (12)
fo—fi
! if £y < 2,00)

here f,,; is the optimal or most desirable value for objective i, and fj; is
¢ least desirable or tolerant value for objective i.

The membership function is one of the basic tenets of fuzzy set theory.
is used as a primary instrument to incorporate inexactness into formal
timization procedures. Zimmermann (1987) and Mendoza & Sprouse
989) provide overviews of the role of membership functions in fuzzy
cision making.

An intuitive explanation of the membership function in the context of
cision making is as follows: the decision maker is very satisfied (i.e. the
embership function or degree of satisfaction is equal to 1) if a solution
yields an objective function value at least equal to f; he is less satisfied
th a solution that gives an objective function value less than f; and he
completely unsatisfied (i.e. the degree of satisfaction is equal to 0) if a
lution X yields an objective function value less than f,.

The problem now is to simultaneously satisfy all objective functions rep-
sented by their corresponding membership functions. Each objective
ose coeflicients are expressed as interval values is represented as two
jective functions in eqn (11), following the extreme positioning concept
described in eqn (10). Thus, following the fuzzy approach described by
mmermann (1978); the FMOLP model can be formulated as follows:

Max ©
subject to
2(X)— 1.
0 < ( ) ‘j“-- i=1,2 5k (13)
./0{ "‘/I:'
AX<B
X220 020

The formulation above follows the MAXMIN approach where the ob-
tive is to find a solution that yields the maximum membership func-
n value, ®, which satisfies the constraint described in eqn (13). That is,
is the highest minimum degree of satisfaction considering all objectives
d their respective desirable limits denoted by f;; and f,,, Some implica-
ns of the FMOLP formulation are described in the next section using
e results from the sample problem.
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A CASE STUDY

To illustrate the FMOLP model described in eqn (13), a sample proble
adopted from Johnson et al. (1986) is used. (For details, please refer
Johnson et al. (1986) and Johnson & Crim (1986)). The sample proble
was modified to reflect multiple objectives as previously described in Ba
& Mendoza (1988). The sample forest is the Brush Mountain Natior
Forest located at the western slopes of the Appalachians in Wi
Virginia. The forest contains loblolly pines in two age classes, mix
hardwoods in one age class, and a meadow. Each age class comprised
a number of individual stands which were grouped into four analy
areas. Table 1 gives the multiobjective programming formulation of t
problem with four objective functions optimized over three 10-ye
periods. For illustrative purposes, three of the objective functios
namely, sediment, timber, and forage, have exact coefficients while the ¢
efficients of the net present value (NPV) objective function are represent
as interval. The sediment objective is also represented as a constra
requiring that the maximum allowable amount of sediment is 4200 tons

Based on the yields, costs and interest rates, the NPVs are comput
using the arithmetic operations described in eqns (2)~(5). Tables 2, 3,
and 5 give details of how the interval values are calculated. To illustr:
the computational procedure, an example for analysis area #2 (mix
hardwood) is presented. In period 3, the forest becomes 40 years ¢
(Table 2). The timber yield for the regeneration harvest is estimated to
1 050 (cu ft/acre). The stumpage value is assumed to be within the int:
val [0-165, 0-245] ($/cu ft). The total revenue per acre is expressed as t
interval 1050* (0-165, 0-245) = [173-25, 257-25] ($/acre). From Table
the road construction cost is between [81,99] ($/acre) while the layc
and sale cost is [0-07, 0-13] ($/cu ft) or [73-5, 136-5] (§/acre). The to
costs are, therefore [81, 99] + [73:5, 136-5] = [154-5, 235-5] (§/acre), a
the net revenue is [173-25, 257-25] — [154-5, 235-5] = [-62-25, 103] ($/acr
In Table 5, the discount factor (1+r)" where r is expressed as an interv
is between [2:3068, 3-0782] when n is 25. Therefore, the NPV for this
tivity is the net revenue (1+r)" = [-62-25, 103]/[2-3068, 3-0782] = [—26
44-65] ($/acre). Similarly, the NPV for overwood removal is calculated
(~1-64, 34-52) ($/acre). Finally, the total NPV from the harvests of t
mixed hardwood area are computed as; [-26-99, 44-65] + [—1-64, 34-5]
[28:63, 79-17] ($/acre).

The coefficients for all other variables associated with analysis un
1-3 are similarly computed and are shown in Tables 2, 3, 4, and 5. F
analysis area 4, the NPVs are estimated to be [-24, —-12], (=34, 10), a
(43, 7), for the variables X, ,, X, and X, respectively.
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TABLE 3
Total Costs for the Sample Problem
nalysis Age Road Layout & sale cost Total cost
ea construction cost
($/acre) ($/100 ft3 ) (8/acre) ($/acre)
10 (87, 93) 4-5, 5-5) (22-5,27-5)  (109-5, 120-5)
1 20 (84, 96) 4, 6) (60, 90) (144, 186)
30 (81, 99) (35, 6-5) (80-5, 149:5) (1615, 248:5)
40 (78, 102) 3,7 90, 210) (168, 312)
20 (87, 93) 9, 1) (44-1, 53-9)  (131-1, 1469)
2 30 (84, 96) 8, 12) (64-4,96-6) (1484, 192-6)
40 (81, 99) (7, 13) (73-5, 136:5)  (154-5, 235-5)
50 (78, 102) 6, 14) (69-3, 161:7)  (147-3, 263-7)
40 (87, 93) (45, 5-5) (135, 165) (222, 258)
3 50 (84, 96) 4, 6) (132, 198) (216, 294)
60 (81,99) (35, 6:5) (1225, 227-5)  (203:5, 326-5)
70 (78, 102) 3,7 (108, 252) (186, 354)
2 overwood 30 (8, 12) (27-6, 41-4) (276, 41-4)
removal 40 (7, 13) (31:5, 58-5) (31-5, 58-5)
50 6, 14) (297, 69-3) (29-7, 69-3)
TABLE 4

NPV of Loblolly Pine Stands in Area #3 Under the Bird Habitat Prescription

Planning  Harvest Stumpage  Total Total Net Harvest Cumulative
pgriod volume value revenue cost revenue NPV NPV
ft’/acre) ( $/ft3) ($/acre) (8/acre) ($/acre) ($/acre) ($/acre) ($/acre)
rvest schedule #1
1 900 (023, (207, (68, (125, (101-35,
027) 243) 83) 176) 145:-64)
2
3 1000 (019, (190, (56, (86, (2794, (12929,
0-31) 310) 104 254) 110-11)  255.75)
rvest schedule #2
1
2 1600 (0-21, (336, (88, (204, (10694, (10694,
0-29) 464) 1320) 376) 221:20)  221-20)
TABLE 5
Discount Factors for the Sample Problem
Age Period n r (+r)
10 1 5 (0-038, 0-042) (12050, 1-228 4)
20 2 15 (0:036, 0:044) (1699 8, 1.907 7)
30 3 25 (0:034, 0:046) (2:306 8, 3-078 2)
40 4 35 (0-032, 0-048) (3:011 5, 5159 9)
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Following eqn (10), the NPV function is now positioned into two ¢
jective functions. A multiple objective programming problem with fi
objective functions is thus formulated using eqn (11) as follows,

Max Z,' = C}!
axZ = Cix | NPV
Max Z* = C)*x
Max Z, = C)x  ....... sediment
Max Z; = C3x o .vvn timber (1
Max Z, = Cyx ... forage
subject to
AX<B
X>0 .

Among the five objective functions, one (i.e. sediment) is to be mil
mized. The membership function for the sediment objective function
formulated as;

= 0 if C‘EX 2_/;2
| S G ; ;
w(X)=| —— = i fip> GX2fy (1
‘/12 —J02
1 if i > GX

where f;, and f;, are the maximum tolerable and minimum desirat
amounts of sediment.

Following eqn (13), the FMOLP model for the sample problem is fc
mulated as a MAXMIN problem described below:

Max O

subject to
C'X -0 (foy—-fl) 2/
C"X -0 (f"y — 1) 2 /"
GX + 0 (fi, —fo) £ /12
G X~ 0 (fo3 — f13) 2 /13 (
CiX = O (fou — f1a) 2 f14
AX<B
X220

To find a solution using this formulation, the f,’s and f,;’s must
known. These values may be specified by the DM, or some benchma
information may be used if available. Otherwise, these values can
computationally derived using a payoff table as illustrated in Table 6. L
Jo k= 1,2,...,5, be the feasible ideal values for the following five I
problems:
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Max (min) f,(x) = CGX k=1,2,...,5

subject to
AX<B (17)
X=0

[n Table 6, z; is the value of the ith objective function when the jth
jective is optimized.

min {z;} ifi=1,2,4,5.
fu= max {z;} if i = 3.
j=12,...,5
Similarly
B [ max {z,} ifi=1,2,4,5.
Jor = min {z;} if i = 3.

By solving eqn (16), a compromise solution is found which is sum-
rized below.

Xy = 200 Xy = 300

Xy = 126 Xy = 84

X313 = 104 Xyvy = 125
Xyp = 127 Xypy = 133
Xq = 126 Xaqy = 174

H, =492020 C =315
H, =492024  all other x; =0
H;=492024 0O =0579

ind the corresponding objective values are

2/ = 126980  z = 226879
2, = 2289 z, = 1476
z,= 77372

TABLE 6
Pay-off Table: f;; and f|; Computation Results

ective

1lues Max Z! Max 27 MaxZ, MaxZ; MaxZ, Joi i
Z, 217031 210799 -7 200 193636 -12000 217030 -10200
Z " 368 671 372200 -3 600 352408 3000 372200 -3 600
zZ, 4200 4200 900 4200 1350 900 4200
Z, 2452 2418 0 2 549 0 2 549 0
Z, 60 000 90 000 60 000 60 000 90 000 90 000 60 000

Z," NPV = Net present value ($)

SED = Sediment yield (ton)

TBR = Timber production (MCF)
FOR = Forage production (AUM)
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The results as described above show ® = 0-579. This suggests that t
highest degree (between 0 and 1) that the desirable levels (i.e. f;,) can
met simultaneously is 0-579. Comparing the actual objective function vz
ues above and the desirable and tolerable levels contained in Table 6, t
membership function for each objective is calculated as follows: Z,/
0-603, Z\* = 0:613, Z, = 0-579, Z; = 0-579, Z, = 0-579.

The membership function ® from the solution described above hel.
illustrate the meaning and implication of the FMOLP model described
eqn (13). The membership function is a measure of the degree of satisfa
tion of any solution. For a given objective, the target levels are specific
as an interval, a tolerable limit, f;,, and a desirable limit £, The line:
membership function in eqn (12) is formulated so that the membersh
function for any objective i is equal to 1, if the desirable target is a
tained; equal to 0, if objective i is achieved at the level below the tole
able limit; and between O and 1, if the objective is attained at a valr
between fy; and f,,.

Any solution to eqn (13) yields different membership function valu
(i.e. degree of satisfaction) for each objective. Some solutions will yie
high membership functions for some objectives, and low values for oth:
objectives. The problem then is to choose the ‘best’ compromise solutic
considering all membership function values of each objective. While
may not be obvious from eqn (13), the FMOLP model is designed
search for a solution that yields the highest minimum membership fun
tion value (i.e. Max(Min u,(X)) for all i). Intuitively, this implies a con
promise solution where the objectives are at a minimum overall degree ¢
satisfaction equal to ®. In the sample problem, the minimum degree «
satisfaction is 0-579. Except for the NPV objective, all the other three ol
jectives have degrees of satisfaction equal to 0-579.

Like any mathematical planning model, the solution generated aboy
represents only one out of a potentially large number of solutions. Usir
sensitivity analysis, or the methods described by Mendoza & Sprou:
(1989), other solutions could be generated. In evaluating alternative solt
tions generated by the FMOLP model, one measure of solution desirabi
ity is the actual value of ®. Obviously, higher values of & are preferabl
However, ® is dependent on the specified target levels (f; and f;)) so
should be used with caution.

In some planning problems, objectives might be ranked or prioritize
so that some objectives are valued more than others. Under this sitt
ation, other methods of combining the membership functions in eqn (1
could be used. As eqn (13) implies, all objectives are treated equall:
Mendoza & Sprouse (1989) offer some alternative approaches when ot
jectives are considered of unequal importance.
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tensions of FMOLP model

¢ FMOLP model described above is formulated to accommodate im-
cision only in the objective function coefficients. However, imprecision
the constraint set is also pervasive in forest planning. For instance,
1d coefficients typically used in growth projection and harvest schedul-
' models are subject to error and could possibly give inaccurate growth
imates. Hence, constraints such as even flow or nondeclining yield
mmonly used in US national forest planning, should also reflect these
ccuracies in yield prediction. While this situation is not illustrated in
: sample problem, the FMOLP model can be generalized to accommo-
te imprecision in the constraint set.

One way to model this situation is not to require that AX < B in eqn
) be strictly satisfied within the bounds specified by B. Instead, a cer-
n amount of violation is tolerable. Following eqn (12), the member-
p function of fuzzy constraints can also be described as;

0 if b, + p, < (AX),
b + p;— (AX),
4, (X) = oUW g <axyehiep (8)
Di
1 if (4X), < B,

ere p; is the admissible tolerance in constraint i.
Hence, the general optimization problem that accommodates fuzziness
the objective function and constraints can be formulated as,

Max ©
subject to
-O(F,-F)+CX2F (19)
OP + AX<B+P
X220 020

ere F,, F, are the desirable and least desirable targets for the objective
1ctions and B' and P are the tolerable limits and allowable deviation
- all fuzzy constraints.

The generalized fuzzy formulation described in eqn (19) exhibits
tain characteristics that resemble goal programming. The similarities
d differences between these two approaches are described elsewhere
arasimhan, 1980, 1981; Hannan, 1981, 1982; Ignizio, 1982; Tiwari et
, 1987).
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SUMMARY

Uncertainty in forest planning is pervasive, entering in the form of a la
of information, imprecision or inaccuracies in estimating model para
eters, and inexact or imperfect data. All of these cause uncertainties tt
must be incorporated in any planning model. For these kinds of unc
tainties, fuzzy programming approaches offer a convenient framewc
for planning and decision making.

Besides imprecision, forest planning is also inherently multiple obj
tive, mainly due to the multiple use nature of forest management. Hen
forest planning models should also address multiple objective concerns
forest management.

The two characteristics of forest management described above ma
forest management an appropriate environment for fuzzy multiple obje
tive programming models. In this paper, the FMOLP model develop
treats imprecision by specifying the objective function coefficients as :
terval values, instead of exact numbers. In addition, target values f
each objective representing desirable and least desirable limits, are al
specified. The model is applied to a sample problem where stumpa
prices, costs, and interest rates are specified as intervals resulting in inte
val-valued coefficients of the NPV objective function. The three remai
ing objectives are assumed to be precise or deterministic, although th
could have been treated as interval valued.

The FMOLP model developed in this paper follows the ‘extreme po
tioning’ concept proposed by Rommelfanger et al. (1989) for objectiv
with interval-valued coefficients. However, the approach of Zimmerma
(1978) is used instead of the stratified piecewise reduction technique pr
posed by Rommelfanger et al. (1989). Although the approach propos
appears crude, it is probably sufficient for forest planning considering t
type and amount of forest information available, and the complexity
the forest ecosystem.

The FMOLP model is intuitively sound. First, the model requires on
rough estimates instead of exact values for the objective function coef
cients. Second, the model is conveniently formulated such that conve
tional solution algorithms can be used. Moreover, the capability
incorporating multiple objectives and specifying target values (appro:
mated by interval limits) for each objective is appealing. Compromise s
lutions generated under this framework project fairness, particular
when dealing with a large number of decision makers typically found
forest planning environments.

The use of membership functions is one of the unique and novel fe
tures of fuzzy mathematical programming. However, it also presents o1



G. A. Mendoza, B. B. Bare, Z. Zhou

the major limitations in incorporating imprecision and inexactness
o formal optimization procedures. The form of the membership func-
n used in this study is linear as described in eqn (12). While approxi-
ting the membership function as linear may be justifiable in forest
nning, this may not be the case for other problems where the member-
p function may be more accurately represented as nonlinear. Zimmer-
nn (1987) presents a number of alternative forms for the membership
ction,

I'he MAXMIN model described in eqn (13) is one of several formula-
ns that could be used under fuzzy mathematical programming. Men-
za & Sprouse (1989) and Zimmermann (1987) described a number of
ernative formulations depending on where and how fuzziness is re-
ted in the problems (e.g. fuzziness may occur in the objective func-
n/s, constraints or both; fuzziness may be reflected as fuzzy parameters
cocfficients).

Some observations can be noted with regards to the fuzzy approach to
nning and decision making. One is the flexibility it provides in the
delling process. The classical view of optimizing the attainment of a
en objective is replaced with a more practical concept of satisficing
. attaining a satisfactory level of achievement). In terms of the con-
aints, flexibility is reflected in treating the right-hand sides as flexible
its rather than absolute bounds.
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